Non-local dynamics governing the self-induced motion of a planar vortex filament
نویسنده
چکیده
While the Hasimoto planar vortex filament is one of few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics, however the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA, and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their form under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.
منابع مشابه
Dynamics of a planar vortex filament under the quantum local induction approximation
The Hasimoto planar vortex filament is one of the rare exact solutions to the classical local induction approximation (LIA). This solution persists in the absence of friction or other disturbances, and it maintains its form over time. As such, the dynamics of such a filament have not been extended to more complicated physical situations. We consider the planar vortex filament under the quantum ...
متن کاملMultiple breathers on a vortex filament
In this paper we investigate the correspondence between the Da Rios-Betchov equation, which appears in the three-dimensional motion of a vortex filament, and the nonlinear Schrödinger equation. Using this correspondence we map a set of solutions corresponding to breathers in the nonlinear Schrödinger equation to waves propagating along a vortex filament. The work presented generalizes the recen...
متن کاملDynamics of a planar vortex filament under the quantum local induction approximation.
The Hasimoto planar vortex filament is one of the rare exact solutions to the classical local induction approximation (LIA). This solution persists in the absence of friction or other disturbances, and it maintains its form over time. As such, the dynamics of such a filament have not been extended to more complicated physical situations. We consider the planar vortex filament under the quantum ...
متن کاملGeometry and Topology of Finite-gap Vortex Filaments
In this talk, I will discuss the vortex filament flow, and its connection with the nonlinear Schrödinger equation (NLS), the geometry of solutions to the filament flow that correspond to finite-gap solutions of NLS, and in particular, the relationship between geometric properties of the filament to features of the Floquet spectrum of a periodic NLS potential. These will be illustrated by the ex...
متن کاملDynamics of Vortices in Two-Dimensional Magnets
Theories, simulations and experiments on vortex dynamics in quasi-two-dimensional magnetic materials are reviewed. These materials can be modelled by the classical two-dimensional anisotropic Heisenberg model with XY (easy-plane) symmetry. There are two types of vortices, characterized by their polarization (a second topological charge in addition to the vorticity): Planar vortices have Newtoni...
متن کامل